Sets and relations

753 views 4 replies

dear , friends

1. out of 2000 employees in an office 48% preferred coffee , 54 % liked tea and 64 % used to smoke (s ) out of total 28% C& t    32 % used t & s .... and 30 % preferred c & s only .... 6 % did none of these

1 ... the number having all three ??

2. no of emoployees having t & s    but not c

3.. no of preferring coffee only ??

Replies (4)

answers

1) 420

2) 220

3) 220

 

De Morgan’s law

n(A u B u C) = n(A) + n(B) + n(C) - n(A n B ) -  n(B n C) - n(A n C) + n (A n B n C)

n(C u T u S) = n(C) + n(T) + n(S) - n(C n T) -  n(T n S) - n(C n S) + n (C n T n S)   -------- (1)

n(C) = 960

n(T) = 1080

n(S) = 1280

n(C n T) =  560

n(T n S) = 640

n(C n S) = 600

n(C c n T c n S c) = 60

n(C c n T c n S c) = n(C  u T  u S) c

total number of employees = n(C u T u S) + n(C u T u S) c ------------------------------(2)

substitute values in eqn (1) & (2), we get

2000 = 960 + 1080 + 1280 – 560  - 640 - 600 + n (C n T n S)    + 60

n (C n T n S)    = 2000 – 1580

the number having all three, n (C n T n S)   =  420

 

2) no of emoployees having t & s    but not c =

n(T n S) - n (C n T n S) = 640- 420

= 220

 

 

3) no of preferring coffee only =

n(C) - n(C n T) - n(C n S) + n (C n T n S) = 960 – 560 – 600 + 420

 = 220

venn diagram for more explanation


CCI Pro

Leave a Reply

Your are not logged in . Please login to post replies

Click here to Login / Register